

Dr Brice Liera
endodontiste

Que peut-on retrouver radiographiquement au niveau de la résorption radiculaire cervicale externe de cette canine ? Dr Brice Liera
endodontiste

- Des canaux de résorption (resorption channels)
- La porte d'entrée de la résorption (portal of entry)
- Un tissu d'apposition semblable à l'os (bonelike tissue apposition)
- La PRRS (pericanalar resorption- resistant sheet) = feuillet résistant à la résorption radiculaire
- Une différence de radio opacité entre la dentine et le tissu de réparation (repair border)

Dr Brice Liera
endodontiste

endodontiste

Clinical Research

Understanding External Cervical Resorption in Vital Teeth

Atbina M. Mavridou, DDS, MSc, ** Estber Hauben, MD, PbD, * Martine Wevers, PbD, Evert Schepers, DDS, PbD,* Lars Bergmans, DDS, MSc, PbD,* and Paul Lambrechts, DDS, PbD*

Abstract

Introduction: The aim of this study was to investigate the 3-dimensional (3D) structure and the cellular and tissue characteristics of external cervical resorption (ECR) in vital teeth and to understand the phenomenon of ECR by combining histomorphological and radiographic findings. Methods: Twenty-seven cases of vital permanent teeth displaying ECR were investigated. ECR diagnosis was based on clinical and radiographic examdiagnosis was based on clinical and radiographic examination with cone-beam computed tomographic imaging. The extracted teeth were further analyzed by using nanofocus computed tomographic imaging, hard tissue histology, and scanning electron microscopy.

Results: All examined teeth showed some common the extractivities. Based on the clinical and experimental characteristics. Based on the clinical and experimental findings, a 3-stage mechanism of ECR was proposed. At the first stage (ie, the initiation stage), ECR was initiated at the cementum below the gingival epithelial attachment. At the second stage (ie, the resorption ated at the cementain control attachment. At the second stage (ie, the resorption stage), the resorption invaded the tooth structure 3-dimensionally toward the pulp space. However, it did not penetrate the pulp space because of the presence of a pericanalar resorption-resistant sheet. This layer was observed to consist of predentin, dentin, and occasionally reparative mineralized (bonelike) tissue, having a fluctuating thickness averaging 210 µm. At the last advanced stage (ie, the repair stage), repair took place by an ingrowth and apposition of bonelike tissue into the resorption cavity. During the reparative stage, repair and remodeling phenomena evolve simultaneously, whereas both resorption and reparative stages progress in parallel at different areas of the tooth. taneously, whereas both resorption and reparative stages progress in parallel at different areas of the tooth. Conclusions: ECR is a dynamic and complex condition that involves periodontal and endodontic tissues. Using that involves periodontal and endodontic tissues. Using clinical, histologic, radiographic, and scanning microscopic analysis, a better understanding of the evolution of ECR is possible. Based on the experimental findings, a 3-stage mechanism for the initiation and growth of ECR is proposed. (*J Endod 2016;42:1737–1751*)

Cone-beam computed tomography, external cervical resorption, hypoxia, nanofocus computed tomography, reparative mineralized tissue

External cervical resorp-tion (ECR) has at-tracted the interest of endodontists and dental clinicians because of its complex and invasive pattern (1, 2). This interest is confirmed by the

Significance

This work helps in exploring the evolving phenomena of ECR in vital teeth. By understanding the 3D nature and repair mechanisms, which are underestimated because of radiographic limitations and lack of know-how, a more adequate treatment decision will be achieved.

rest is confirmed by the amount of recently published articles in this field (3, 4). However, the majority of this research work focuses only on individual ECR case reports. Indeed, to date, only a few have focuses only on individual ECR case reports. Indeed, to date, only a few have first fundamental work was performed by Heithersay in which an extended report on ECR was introduced based on the combination of clinical, radiographic, epidemiological, and histopathological findings (6–10). This researcher observed that there are various degrees of ECR progression, indicating that this condition evolves in different stages. It should be mentioned that, in current clinical practice, the treatment and prognosis of ECR are still based on the classification proposed by Heithersay (14, 15). However, this classification has 2 main limitations.

- 1. This approach is only based on the 2-dimensional extent of the resorption. Indeed, This approach is only based on the 2-dimensional extent of the resorption. Indeed, the implementation of more recent in vivo and ex vivo techniques such as cone-beam computed tomographic scanning and nano-computed tomographic (CT) imaging, respectively, has provided new information on the 3-dimensional (3D) nature of this condition (16–18).
 Heithersay's classification does not take into consideration the reparative nature of ECR Recent reports revealed that ECR could be both destructive and separative.
- of ECR. Recent reports revealed that ECR could be both destructive and reparative

The phenomena that occur during ECR are very complex (1). For example, during the initiation phase, the nature and structure of the portal(s) of entry (starting point of the resorption) can influence the progression of ECR (18). Furthermore, the pattern and types of cells involved during ECR progression and repair are still unclear (1). In addition, it is believed that the pulp tissue is not involved in ECR (1) and that resorption does not penetrate the pulp because of the presence of a resistant

From the *Department of Oral Health Sciences, BIOMAT Research Cluster, KU Leuven and University Hospitals Leuven, Leuven, Belgium; *Private Practice, Endo Rotterdam, Rotterdam, The Netherlands; *Department of Imaging and Pathology, KU Leuven and University Hospitals Leuven, Leuven, Belgium; and *Department of Materials Engineering (MTM), KU Leuven, Leuven, Belgium.

Address requests for reprints to Dr Athina M. Mavridou, Department of Oral Health Sciences, BIOMAT Research Cluster, Kapucijnenvoer 33, 3000 Leuven, Belgium.

Address requests for reprints to Dr Athina M. Mavridou, Department of Oral Health Sciences, BIOMAT Research Cluster, Kapucijnenvoer 33, 3000 Leuven, Belgium.

Address requests for reprints to Dr Athina M. Mavridou, Department of Oral Health Sciences, BIOMAT Research Cluster, Kapucijnenvoer 33, 3000 Leuven, Belgium.

Address requests for reprints to Dr Athina M. Mavridou, Department of Oral Health Sciences, BIOMAT Research Cluster, Kapucijnenvoer 33, 3000 Leuven, Belgium.

Address requests for reprints to Dr Athina M. Mavridou, Department of Oral Health Sciences, BIOMAT Research Cluster, Kapucijnenvoer 33, 3000 Leuven, Belgium.

Address requests for reprints to Dr Athina M. Mavridou, Department of Oral Health Sciences, BIOMAT Research Cluster, Kapucijnenvoer 33, 3000 Leuven, Belgium.

Address requests for reprints to Dr Athina M. Mavridou, Department of Oral Health Sciences, BIOMAT Research Cluster, Kapucijnenvoer 33, 3000 Leuven, Belgium.

Address requests for reprints to Dr Athina M. Mavridou, Department of Oral Health Sciences, BIOMAT Research Cluster, Kapucijnenvoer 33, 3000 Leuven, Belgium.

Address requests for reprints to Dr Athina M. Mavridou, Department of Oral Health Sciences, BIOMAT Research Cluster, Leuven, Leuven, Leuven, Leuven, Belgium.

Address requests for reprints to Dr Athina M. Mavridou, Department of Oral Health Sciences, BIOMAT Research Cluster, Leuven, L

External Cervical Resorption in Vital Teeth

JOE - Volume 42, Number 12, December 2016